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1 Introduction

Turbo codes were first introduced in a 1993 paper by Berrou, Glavieux, and
Thitimajshima [1] describing their new coding method. Their simulation results
of a rate—% turbo code together with BPSK modulation in an additive white
Gaussian noise (AWGN) channel showed coding gains of up to 11 dB, which is
within 0.5 dB of the Shannon capacity limit. Their method is a generalization of
concatenated codes, a technique developed by Forney [2] to achieve significant
coding gain at reasonable complexity. The concatenation of Reed-Solomon (RS)
block codes and convolutional codes, for example, has been used quite effectively
for many years in a variety of applications, including audio compact discs, deep-
space telemetry, and in commercial and military modems.

Originally, turbo codes were defined in [1] as the parallel concatenation of
two constituent convolutional codes, separated by a single pseudorandom in-
terleaver, and employing an iterative decoding algorithm (Fig. 1). Now, the
original concept has been extended to include serial concatenation, more than
two constituent codes (CC’s), block CC’s, and multiple interleavers. Results
of simulations performed at the Jet Propulsion Laboratory (JPL), cited in [3],
demonstrate that turbo codes can achieve significant coding gains with orders of
magnitude reductions in complexity relative to some powerful RS/convolutional
concatenated codes over the approximately AWGN deep-space channel. In the
deep-space applications of JPL delay can be virtually ignored since the data
are processed ofl-line; however, in many other applications, such as those in-
volving voice communication, delay cannot be ignored. In general, the decision
to use turbo codes involves an analysis of the trade-offs between the benefits
of very large coding gain achieved at reasonable complexity and the costs of
increased delay, related to interleaver length and number of decoding iterations,
and bandwidth expansion.
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Figure 1: Parallel concatenated turbo code.

As the near-capacity gains claimed for turbo codes have been confirmed and



widely reported in the literature, the range of applications of turbo codes has
expanded to many areas of communications. This paper presents the results
of applying turbo codes to Trellis-Coded Modulation (TCM); that is, we re-
place the standard convolutional codes used in TCM with more powerful turbo
codes, in an attempt to achieve the large coding gains at reasonable complexity
reported for turbo codes, while maintaining the high bandwidth efliciency as-
sociated with TCM methods. For the TCM part of the combination, we use a
variation of Ungerboeck’s technique [4] known as Pragmatic TCM [3].

The remainder of our paper is organized into two main sections: a tutorial
description of turbo code decoding in general (section 2), with simulation re-
sults for a rate—% turbo code with BPSK modulation and for a rate—% turbo
code with QPSK modulation; and a description of our turbo-coded Pragmatic
TCM (section 3), with simulation results for a rate—% turbo code with 8-PSK
modulation and a discussion of delay.

2 Turbo Code Decoding

The Viterbi algorithm [6] is the most widely used method to decode convolu-
tional codes, preferred over the Bahl, Cocke, Jelinek, and Raviv (BCJR) algo-
rithm [7] in most applications. The Viterbi algorithm, based on the maximum
likelihood (ML) decision criterion, minimizes the error probability in detect-
ing the whole sequence (block, message, or word); while the BCJR algorithm,
based on the maximum a posteriori (MAP) decision criterion, minimizes the
error probability in detecting symbols or bits [7—9]. Even though the Viterbi
algorithm is not optimal in terms of bit error probability, in most applications
its bit error performance nearly matches that of the optimal but more complex
BCJR algorithm. For this reason the Viterbi algorithm has been preferred over
the BCJR algorithm for the decoding of convolutional codes.

For turbo codes, however, the size of the state-space is too large to perform
Viterbi decoding [8], so Berrou et al. [1] developed a suboptimal iterative decod-
ing procedure requiring a posteriori symbol probabilities which the MAP-based
BCJR algorithm can produce. Hence, the BCJR algorithm has become an inte-
gral part of the iterative decoder for turbo codes. Simulation results in [1] and
in many other references demonstrate near-Shannon limit performance of the
iterative decoder and suggest that it often converges to the optimal decoding
solution. The exact convergence properties remain an open research question;
see [10-12], for example.

2.1 The BCJR Algorithm

While Bahl et al. [7] derived this algorithm to solve the general problem of es-
timating the a posteriori probability (APP) of the states and transitions of a
Markov source observed through a noisy discrete memoryless channel, they also
showed that the algorithm could be applied to linear block and convolutional
codes as a special case. We describe the BCJR algorithm in the context of con-



volutional codes, following the development of Benedetto, Montorsi, Divsalar,
and Pollara [9].

2.1.1 Assumptions and Notation

We assume the same communication system (Fig. 2) as in [9] in which a source
produces a discrete-time indexed sequence of information symbols, v = (u4, ... ,
Ug,- - - , Uy ), where each 1y, belongs to the information symbol alphabet, U, con-
taining I symbols. An encoder then maps the sequence of information symbols
into a sequence of code words, ¢= (¢1,... ,Cp,-.. ,Cy), where each ¢, € C. The
code, C, is a subset of the K-fold Cartesian product of the code symbol alpha-
bet, C, containing M symbols, that is, ¢, € C C C¥. See below (Example 1)
for a binary symbol alphabet example.

Source u Encoder < Modulator X
Channel
P(xi|y) Soft P(yelxr) Soft y
Decoder Demodulator

Figure 2: Communication system.

Example 1 Let U = Fy & 10,1}, the finite field containing two elements, so
that w is a sequence of binary symbols, or bits. Consider the mte—% binary
recursive systematic convolutional encoder with feedback connection vector go =
[111] and feedforward connection vector gz = [101], depicted in shift register
form below (Fig. 3). This encoder generates code words, ci, = (cx1, cre) € C, for
which C = CK, C =TFy and K = 2 in the above notation, and where the code
words are generated by the following system of equations:

Ck1 = U,
ar = Up+ap-1+ar_2,
Ck2 = G+ Qp—2.

After the encoding operation (Fig. 2) a modulator performs a one-to-one
map of the sequence of code words into a sequence of channel input symbols,
z = (x1,-..,%Tk,... , %), where each z; belongs to a set X containing M
symbols.! The channel input symbols, xj, are then transmitted through a
stationary, memoryless channel, producing a sequence of received observations,

lFor simplicity we have assumed that the cardinality of the modulator alphabet, X, is
equal to the cardinality of the code symbol alphabet, C.
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Figure 3: Rate—% binary recursive systematic convolutional encoder of Example

1.

y=(Y1,--- ,Y%,--- ,Yn). The received observations are input to a soft-output
demodulator, producing a sequence of distributions, P(ys | zx), conditioned on
the channel symbols. Finally, a soft-output decoder, produces a sequence of
probability distributions, P(x, | y).

We assume further that the encoder is a time-invariant recursive systematic
convolutional (RSC) encoder with N states, S = {5;,... ,Sy}, and an associ-
ated trellis representation. With these assumptions the code sequences ¢ and
the corresponding transmitted signal sequences & can be identified with paths
in the trellis, and also ¢ and & can be uniquely associated with a time-indexed
state sequence 8 = (89,... ,Sk,... ,8n), where s; € S and where the first and
last states, s9 and s, are assumed to be known by the decoder. As in [9] we
introduce the following notation relative to sections of the trellis immediately
before and after the kth time instant:

1. S; (u') is the unique precursor’ of S; defined by the information bit u’
determining the transition S; (v') — S;.

2. Si"(u) is the unique successor? of S; defined by the information bit u
determining the transition S; — S (u).

3. To each transition in the trellis a signal x and code word ¢ are associated,
which depend on the state from which the transition originated and on

2For the class of recursive convolutional codes, the precursor (successor) of S; is uniquely
determined by the information bit u’ (u).



the information bit u determining that transition. This dependence will
be denoted by z (v, S;) or ¢(v',S;) when the transition terminates at S;
and by z(5;,u) or ¢(S;,u) when the transition originates from S;.

A pictorial description of this notation, like that provided in [9], is included
below (Fig. 4), followed by an explanation of the notation (Example 2) in terms
of the RSC encoder of Example 1.

S; ")

S Sy Sy
k=1 k k+1

Figure 4: Representative trellis section.

Example 2 Given the mte—% binary RSC encoder of Example 1 (Fig. 3) and
all possible combinations of input information symbol, up, and current state
of the shift register, (ax_1ax_2), we have derived the shift register input, ay,
the next state, (apar—1), and the output code word, (ci1,ck2), displayed in the
table below. Letting s = S; = (01), for example, it is seen from the table that
S (0) = (11), ¢(0,S;) = (0,1), S;(1) = (00), and ¢(S;,1) = (1,1); while the

values of (0, S;) and 2(S;, 1) are undetermined since the modulation scheme is
unspecified.

Input Current Shift Next Output
Information Symbol State Register Input  State  Code Word
0 (00) 0 (00) (0,0)
1 (00) 1 (10) (1,1)
0 (01) 1 (10) (0,0)
1 (01) 0 (00) (1,1)
0 (10) 1 (11) (0,1)
1 (10) 0 (01) (1,0)
0 (11) 0 (01) (0,1)
1 (11) 1 (11) (1,0)

Table 1: States of the RSC encoder of Example 1.



2.1.2 Computation of the APP’s

The original form of the BCJR algorithm applied to this communication system,
calculates the APP’s of encoder states and transitions, namely

o1(Siu) = Pluy, = u,85-1 = S | y), (1)

the a posteriori transition probabilities at time k, given the complete received
sequence.” We will now show that o (9;, ) is the product of four terms.

First, we partition y into past observations, ylf_l = (y1,..-,Yx—1), the
present observation, yx, and fulure observations, yp.y = (Yr+1,--- ;Yn), and
apply Bayes’ rule to expand 0(S;, 1) as

1 n k—1
ak(Si,u) = Wgsp(yk+1 |uk = U, Sg—1 = Sivsk - Sj7 Y1 7yk)

k—
X P(up =u, 8,1 = 5,8, =5, 9y YY)
After omitting conditioning variables in the first term of the summation, which

are irrelevant by the Markov behavior of convolutional codes, we get that

or(Si,u) = Z P(yp oy |86 = S95)Plur, = u,8p-1 = Si, 81, = Sj, Y ).

_L
P &=,
(2)

Next, we expand the second term inside the summation in (2) into the prod-
uct of four terms as

P(up =u,84-1 = 5;,8, = Sj7ylf_17yk) = P(up = w,yp | 861 = Snyllc_l)

X P(sp = Sj |ur, = u, 8,1 =95, ylf_lﬂk)
x P(sio1=Si|yi P~ ") (3)

The first term of the product on the right hand side (RHS) of (3) may be
rewritten as

Plug = w,yg |85 1= Si, uh ") = Pluy, =w,yp| 511 =5i)
= Plzr = z(Si,w), ). (4)
Then, substitution of (4) and of the definition of
an(Si) £ P(sy = Si| y}) (5)

for the first and third terms, respectively, on the RHS of (3) gives
P(uy = u,8, 1= Si, 8, =S5, y8 " " us) = P(sy = S |up = u, 851 = S;)

X P(Zl’lk = ZU(Si7u)7yk)ak71(si)P(yllc_1)7 (6)

3In some expositions of the BCJR algorithm, 0k (Si,u) is defined equivalently as the joint
probability of ©g, sp_1, and y rather than the conditional probability given here.




where we have dropped irrelevant conditioning variables in the second term on

the RHS of (3).
Finally, substituting (6) and the definition of

By(Si) & (yk+1 | sz = 5i) (7)
into (2), we get that

k(i u) = Z Br(S;)P(sk = Sj |ur = w, s—1 = ;) P(xx = x(Si, u), yr)
5;e8

x a1 () Py ™)/ P(y).

But, by the uniqueness of the successor of state S; (section 2.1.1), the second
term in this summation equals 1 if S; = S?' (), and O otherwise; therefore, it
follows that this sum reduces to the single term

05,(9i, ) = o1 (57, (2(Si, 1)) B (S (W), (8)
where
A 1
" By

is a normalizing constant assuring that ZS,; . 0k(Si,u) =1 and

Vi (2(Si,u)) £ P(xy, = 2(Si,u), yr)
= Plyr |z = 2(5;,w)Plxy = 2(S;,u)). (9)

From the second line of (9) we observe that 7, (z(S;,«)) is computed from
the output of the soft demodulator (Fig. 2) and from knowledge of the a priori
probabilities of the channel symbols, and further, that the logarithms of the
first factor on the RHS are just the branch metrics of the Viterbi algorithm.
Computation of oy, 1(S;) and 8, (S (u)) in (8) is accomplished by means of a
forward and backward recursion, respectively, through the trellis as described
in the following section.

2.1.3 Computation of o and 8
Applying Bayes’ rule to the definition in (5), it is seen that

Oék(

Sk =S5, |Uk = U, Sp—1 = Spy'f)

ueUs cs
_ _ k
X P(up =u,sp—1=5;,97).

After omitting the irrelevant conditioning vector, y’f, and by the uniqueness of
the precursor of state S; (section 2.1.1), the first term in this sum is simply

P(sk:Si|uk:u,sk,1 :Sj,yllc) = P(sk:Si|uk:u,sk,1 :Sj)

B { 1, if S; = S; (u)

0, otherwise.



Hence, this double summation expression for a(.S;) reduces to the single sum-
mation

() = Fryry 3 P = se1 = ST ), 98). (10)

uwelU

Partitioning y'f into the past and present observations, ylf_l and yy, respec-
tively, as in section 2.1.2, we see that

P(uk = UySp—1 = S;(U)7y§) - P(Uk = U,Yr | Sp—1 — S;(U), yf_l)

x Psp1=S; (u)] gy~ )P(yi™ ).

Omitting the irrelevant conditioning term, ylf_l, we recognize that the first
term on the RHS of this last equation is 7, (x(u, S;)); while the second term is
ar-1(5; (v)). Finally, substituting into (10) we see that a(S;) is computed by
means of the forward recursion

@k (95) = > ar-1(S; (W) (u, 55)), (11)

where

1
P(yk)

is a normalizing constant assuring that Zsi ar(S;) = 1 and where the recursion
is initialized as

(1>

ha,

1, lfSl = 80

0, otherwise.

o (Sl) = { (12)
It should be noted that this forward recursion in (11) is, in effect, a weighted
sum of the branch metrics of the Viterbi algorithm. See below (Fig. 5) for a
pictorial representation of this recursion obtained from [3].

By a similar derivation applied to the definition in (7), it can be shown that
83,(S;) may be computed by the backward recursion

Br(8:) = hg, D Braa (ST (W) (x(Si,w)), (13)

uwelU

where hg,_ is a normalizing constant assuring that ZS,; 8,(S;) = 1 and where
the recursion is initialized as

6’”(51) :{ 1, lfSZ:Sn

0, otherwise. (14)
Like the a(S;) term the (3, (S;) term is computed, in effect, as a weighted sum
of the branch metrics of the Viterbi algorithm. See below (Fig. 5) for a pictorial
representation of this recursion.



g (B) = Qg1 (YD) + a1 (O 2)
Vi(2)

Be-1(D) = B (Chy3) + B (D) (H)

Figure 5: Forward and backward recursions of the BCJR algorithm.

2.1.4 Computation of ~

The exact form of v, (x(S;,u)), which is required to calculate o(S;, u), ag(S;),
and [,(S;), varies depending on the specific encoder and modulator. To provide
a sample calculation, we consider a specific case of the communication system
described above (Fig. 2) for which the encoder is a rate—% turbo code and the
modulator performs a QPSK mapping (Fig. 6). As shown in Figure 11, the
rate—% turbo code is obtained by puncturing parity bits output from a rate—%
turbo code, comprising two identical RSC encoders which are concatenated in
parallel and separated by an interleaver, denoted as I in the figure. Following
the notation in section 2.1.1, the information bits will be denoted by ug € U =
F2; the code words will be denoted by ¢, = (cg1,cre) € C?, where C = Fa; the
channel input symbols will be denoted by

T = (Tr1,Tr2) € X = {(+1,+1), (=1, +1), (=1, =1), (+1,-1)},
defined by the mapping
Tpi = 2¢p; — 1, for i =1,2; (15)

and the received observations will be denoted by ¥ = (Yx1,yx2). To emphasize
the dependence of the code words on the input bit uz = u and the encoder state
Sip_1 = 5;, we will use the notation

Ck(Si,U) = (Ckl(Sivu)vckQ(Sivu))
= (u,ckg(Si,u)), (16)

10



since ¢x; = uy (Fig. 6). Similarly, to denote the dependence of the channel
symbols on the input bit and encoder state, we will use the notation

zp(Si,u) = (2p1(Si,w), 2r2(5s, 1))
= (2u — 1720192(51'7“) — 1),

after substitution of (16) into (15). It is assumed that the received observations
Y. are determined by
Yei = Ttk (17a)
Yr2 = Tp2+qr, (17b)

where i, and g are independent, zero-mean Gaussian random variables with
common variance o2,

ckl = Mk xkl E ykl
> QPSK M a >
Rate-1/2 Modulator . nio,
Cc
Uy, Turbo ) k2 n k2
@ Encoder » e >
1

Figure 6: Rate—% turbo code encoder/modulator
Computation of 7, (z(S;, 1)) proceeds as follows. First, from the definition
in (9)
T(@(Si,u) = Plyr|ze = 2(Si,u)) Pley = 2(Si,u))
2
= Pz = z(Si,w)) H P, | Trom = Trm(Si, ),

m=1

since ¥ and yy2 are independent conditional on uy. But, u; = w and s,_1 = 5;
if and only if

xk(Si,u) = (2u — 1,2ck2(5i,u) — 1)
= x(Si7u)7

and Pup = u, 8,1 = ;) = P(ur = u), by the uniqueness of the successor of
state S;. This means that

P(xy, = z(5;,u)) = Plug, = u),
and hence, that

Vi@ (S, ) = Plug = ) T] PWrm | Tam = 2 (Si, ). (18)

m=1

11



Now, from (17a) and (17b) and the assumptions on i, and ¢, and suppressing
the actual value of zz,, the conditional probabilities in (18) are given by

1 1
PWYrm | Trm) = oo exp {_F[ykm — ka]Q} . (19)

After substitution of (19) into (18), we get that

i (2(Sh, 1)) = —— Py = ) exp {_M} , (20)

T 2wo? 202

where

2
D(yr, ) 2 [(yrr — 21)® + (Yn2 — xkz)g]l/

is the Euclidean distance between y;, and xy. Since v, (2(S;,u)) always depends
on the output from the soft demodulator, then v, (x(S;, %)) will in general con-
tain an exponential term which is a function of —D2(yk7 Z1), as in this example.

2.1.5 Steps of the algorithm
The BCJR algorithm can now be stated as follows:

1. Initialize g and 3, according to (12) and (14), respectively.

2. As each yy, is received, 7, (x) is computed according to (9) from P(yy, | zx)
supplied by the soft demodulator and from the assumed a priori proba-
bilities of the channel symbols; the soft decoder recursively computes the
probabilities oy, according to (11); and the values obtained for 7, and ay
are stored.

3. Once the entire sequence y is received, the soft decoder recursively com-
putes the probabilities 3, according to (13) and uses them and the stored
values of v, and oy, to compute 0(S;,u) according to (8).

Like the optimum version of the Viterbi algorithm, the original BCJR algo-
rithm requires the complete received sequence, y; however, the Viterbi algorithm
requires only a forward recursion through the trellis. For this reason the storage
and computational requirements of the BCJR algorithm are significantly greater
than for the Viterbi algorithm.

To relieve the storage and computational burden of the original BCJR algo-
rithm, Benedetto et al. [9] developed suboptimal modifications of the algorithm
which operate sequentially on portions of the received sequence much like the
common variation of the Viterbi algorithm. The first modification, called the
sliding window BCJR (SW-BCJR) algorithm, operates on a fixed memory span
and forces decisions with a given delay [9, section IV]. The authors provide
two versions of the SW-BCJR algorithm. The second modification, called the
logarithmic BCJR (Log-BCJR), converts the algorithm from multiplicative to

12



additive form by means of a logarithmic transform [9, section V]. Two versions
of this modified BCJR algorithm are also developed, with the second version
using a simplifying approximation of the logarithm of the sum of exponentials.
Finally, the authors mention without derivation the possibility of applying slid-
ing windows to the Log-BCJR algorithm [9, section V]. Assuming the use of
techniques similar to these, Viterbi [13] claims that the modified BCJR algo-
rithm has a computational complexity of no more than four times that of a
conventional decoder for the same code, with moderate memory requirements.

2.2 Optimal Bit Decision Decoding

We describe turbo code decoding in the context of the parallel concatenated
turbo code above (Fig. 1), which is composed of: (i) a source, producing

a sequence of information bits,* w = (uy,... ,ug,... ,u,); (ii) an interleaver,
producing % = (U, ... ,U,... ,U,), a bit-permuted version of w; (iii) two par-
allel constituent convolutional codes, a modulator, and a channel which pro-
duce, respectively, code symbols, ¢; = (¢i1,-.. ,Cik,-- . ,Cin), channel symbols,
;= (Ti1,-- - »Tik,--. , Tin), and received observations, ¥; = (Yit,--- ,Yik,-- -
Yin), for i = 0,1,2; and (iv) a demodulator/decoder which ultimately produces
hard-decision estimates, % = (U1, .. , U, ... ,Uy), of the input information bits.

The optimum soft-decision outputs, conditional on all received observations,
y = [Yo, Y1, Y2], are the APP’s of information bit g, which are defined as

Plup, =u|y), for u=0,1. (21)

These APP’s can be computed as

Plu,=u|y) = Zak(Si,u), (22)

S

using the a posteriori transition probabilities, 0(S;, ), which were defined
in (1) and are computed according to (8) by the BCJR algorithm. The log-
likelihood ratio (LLR) of these APP’s is defined as

Pluy =1]y)

Ap=log—k = 1Y)
P8 Py =0|y)

(23)

from which the optimal bit decision (OBD) for information bit uy, based on all
received observations, is determined by

~ { 1,if A, >0 (24)

U= 0,if A <0,

where 4, is an estimate of uy,.
The LLR is, then, a real number representing a soft-decision, where the sign
and magnitude of the LLR give, respectively, the hard decision and the reliability

4For simplicity of exposition, we consider only the binary case.

13



of that decision. To implement OBD decoding, the APP’s of u; are calculated
from the outputs, 0 (5;, %), of the BCJR algorithm using (22), and then Ay and
Uy, are computed according to (23) and (24), respectively. However, because
of the presence of the interleaver, it is very difficult to compute the APP’s
conditioned on all observations; therefore, the following suboptimal decoding
algorithm was developed.

2.3 Suboptimal Turbo Decoding

The suboptimal iterative turbo decoding algorithm (TDA) consists of concate-
nated decoding modules connected by the same interleavers used in the encoding
process. The algorithm is suboptimal because the APP’s and LLR’s computed
by the decoding modules are based on proper subsets of the received observa-
tions rather than on all received observations as in the OBD criterion defined
by (21), (23), and (24). The algorithm is iterative in that updated soft-decision
LLR’s are repeatedly passed from the output of one decoder to the input of
another decoder with the hope that the decision based on proper subsets of the
data will, after several iterations, agree with the OBD based on all of the data.®

For the purposes of this tutorial, we consider the turbo code example above
(Fig. 1) where, for concreteness, the modulator is assumed to comprise three
BPSK mappings defined by

Tik — 2Cik_ 1,fOI‘ i:0,1,2, (25)
and the channel is assumed Gaussian such that
Yik :xik+q’i7for 1 :071727 (26)

where ¢; are independent, zero-mean Gaussian random variables with common
variance 2. In this case the TDA consists of two decoding modules, one module
for each constituent encoder. The computations performed in each module
are described in section 2.3.1, and the linkage of the modules into an iterative
feedback decoder is described in section 2.3.2.

2.3.1 Decoding Modules

In the method proposed by Berrou et al. [1] and expanded upon by Schlegel [8,
section 8.3], the two decoding modules compute separate estimates of wuy, based
on observations received from each encoder (Fig. 1). The first decoding module
computes the quantity

P(Uk:1|y0ay1)

Ak(Cl) = log P(uk — Ol Yo, yl)’

(27)

5In situations encountered in many applications this hope is well-founded; however, see [11]
for a counterexample in which the TDA neither agrees with the OBD nor, in fact, converges
to any decision.
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the LLR for ug, conditional on the noise corrupted information bit sequence,
Yo, and the noise corrupted parity bit sequence, yq, of the first encoder; while
the second decoding module computes the quantity

P(uk:1|§67y2)
P(ur =00, y2)’

Ar(C2) = log (28)
the LLR for ug, conditional on the interleaved version of the noise corrupted
information bit sequence, ¥Jg, and the noise corrupted parity bit sequence, ya,
of the second encoder, thus generating separate estimates, U, (C1) and U (Cs),
of uy. Specifically, the first decoding module computes the APP’s, P(u; =
| Yo, y1), for w = 0,1, as in (22) and (1) with y replaced by [yo, y1], that is, by
applying the BCJR algorithm to the trellis and received observations associated
with the first encoder. Then, Ax(C4) is computed by substituting the APP’s
into (27), and U (C1) is obtained by comparing A (C4) to the zero threshold as
in (24). Similarly, the second decoding module computes the APP’s, P(u;, =
| Yo, Yy2), for v = 0,1, as in (22) and (1) with y replaced by [yg, y=], that
is, by applying the BCJR algorithm to the trellis and received observations
associated with the second encoder. Finally, Ax(C2) is computed by substituting
these APP’s into (28), and % (C2) is obtained by comparing Ax(C2) to the zero
threshold as in (24).

For computational purposes, each of the LLR’s, Ax(C}) and Ax(Cy), is de-
composed into the sum of three terms by expanding vy, (z(S;,u)), as follows.
First note that, according to the notational conventions of this example (Fig. 1),
Yr = (Yor, Y1) and xy = (Tok, %1k ), which implies that

P(yr | = (S5, w)) = P(Yor, Yar | Tor = Tor(Si, w), 1 = 212(Ss, u)).
But,
Pyor, y1r | Tor = Tor(Si, ), 1 = 215(S:,w)) = P(yor | xor = Tor(Si, )
X P(yir | T1x = 212(S:, ),
since yor and 415 are independent, given u; and s;_1. Also,

P(rr =2(Si,uv)) = P(zor = Tox(Si, ), v = 21x(5i, 1))

= Pz = 21:(5,u) | 2ox = o (S, u)) P(xor = wor (S, u)).
Now, on the one hand, from (25) and since ¢o = u, it follows that zgs, = 2uz — 1;
while on the other hand, since &g does not depend on the state of the encoder,

it follows that zox(S;,u) = 2w — 1. This implies that zo; = 2ox(S;, ) if and
only if u = u and, after substitution of the above equations into (9), that

V(2 (S, u)) = P(yor | ur = w)P(y1r | T1x = z1£(Si, v))
X P(.’,Ulk = xlk(Si,u) |$0k = ka(Si,u))P(uk = u)
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Substituting this last equation into (8) and using (22) and (27), leads to the
three-term decomposition

Ak(Cl) - Ak,apr (Cl) + Ak,apa (Cl) + Ak,e(Cl)7 (29)
where

is the LLR of the a priori probabilities of the systematic bit uy,

P(yor |up = 1)
P(yor | ur = 0)

is the LLR of the a posteriori probabilities of the systematic bit u, and Ay (C1)
is the extrinsic information which is computed by subtraction. In the absence
of prior information, such as on the first iteration of the TDA (see section 2.3.2),
it is assumed that P(uy = 1) = P(up = 0) = 1/2 so that Aj qpr(C1) = 0. By
the BPSK modulation assumption of (25) and the Gaussian channel assumption
of (26), it follows that Ay apo(C1) = 2yox/0?. The extrinsic information term,
which does not depend on gy, represents extra knowledge that is gained from
the first decoder. By a similar analysis, it can be shown that

Ak,apr (Cl) é log

Ak,apa (Cl) é log

Ak(CQ) - Ak,apr (02) + Ak,apa (02) + Ak,6(02)7 (30)
where
o, Plug=1)
Ak,apr (02) — log P(Uk )7
P(jor, | ur = 1)
AL ano (C: = log————=
baro(C2) * Por |ux = 0)
= 2Jor/0”,

and Ay, .(Cy) is the extrinsic information. This extrinsic information term is
also computed by subtraction, does not depend on %oz, and represents extra
knowledge gained from the second decoder.

2.3.2 Decoding Algorithm

As mentioned above, in the case of two parallel concatenated codes (Fig. 1),
the TDA consists of two decoding modules which compute LLR’s (27) and (28)
based on the observations from each encoder. The fundamental principle of the
TDA algorithm is for one decoder to provide information to the other decoder
which is uncorrelated with its other inputs [1,14]. In general terms, the TDA
is a process by which the modules iteratively communicate, or feed back, their
results to each other, interleaving or de-interleaving as necessary and updating
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their LLR’s as they go, until finally {2ix(C2)}}_; is output as the set of estimates
of {ug}7_,. This process is depicted pictorially below (Fig. 7), where DEC1
and DEC2 represent MAP decoders corresponding to constituent encoders 1
and 2, respectively, IN'T represents an interleaver, and DEINT represents a
de-interleaver.

D
E
Ao (G, !
{ k,apr( 1)} N
N (GD T
DEC1
Yo
N N (G}
{/\k,apr(cz)}
I
N
T Vo DEC2
Y2

Figure 7: Iterative turbo decoder structure.

To begin the first iteration, the first decoder takes the received observations,
yo and yq, as its input and produces the LLR’s, {Ax(C1)}7_,, via the BCJR
algorithm. At this stage, there is no prior information about ug, and it is as-
sumed, therefore, that uy = 1 and up = 0 are equally likely. So, the first decoder
uses P(up = u) = 1/2 in (20) to compute the 7, for & = 1,... ,,n, required by
step 2 of the BCJR algorithm (section 2.1.5). Then, the extrinsic information
from the first decoder, {Ay, .(C1)}7_;, is computed by subtraction according to
(29), where A opr(C1) = 0 and Ay ap0(C1) = 2yor/0?. The interleaved extrin-
sic information, {K;@@(Cl)}zzl, is fed back to the second decoder as its a priori
information about uy, denoted previously in (30) as {Ag ¢pr(C2) }7_;, and from
this information together with g and s, the second decoder calculates the
LLR’s, {Ax(C2)}7_,, via the BCJR algorithm. The feedback of the extrinsic
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information, {K;@@(Cl)}z:l, to the second decoder is accomplished by using

Pluy =u) = eXp(UKfve(Cl))
T+ exp(Ae(C1)

in its calculation of the 7, ’s prescribed by (20). Output of the LLR’s, {Az(C2)}7_,,
completes the first iteration of the TDA.

To begin the second iteration, the extrinsic information from the second
decoder, {Aj (C2)}}_,, is computed by subtraction according to (30), where
Ag apr(C2) = K;@@(Cl) and Ay ap0(C2) = 25or/0?. The de-interleaved extrinsic
information terms, {Ay .(C2)}7_,, are fed back to the first decoder as its a priori
information about uy, denoted previously in (29) as {Ag apr(C1) }i—,, and from
this information together with yo and wyy, the first decoder re-calculates the
LLR’s, {Ax(C1)}7_,, via the BCJR algorithm using

B _ eXp(uKk,e(C2))
P(Uk = u) ] + eXp(K]@e(C?))

in its calculation of the ;s prescribed by (20). Similarly, the second decoder
re-calculates the LLR’s, {Az(C2)}7_,, and output of these terms completes the
second iteration of the TDA.

In general, the benefit obtained from additional iterations is a decreased bit
error probability in the estimation of the information bits, although this benefit
diminishes with increasing number of iterations [1, Fig. 5]. Finally, the TDA is
terminated after some number of iterations, and {4, (C2)}}_, are output after
comparing the LLR’s, {Ax(C2)}7_,, to the zero threshold as in (24).

2.4 Results

Plots of simulation results of bit error rate (BER) versus Fy,/Ny are provided
below for two turbo encoder/modulator systems mentioned previously: a rate-
% turbo code with three BPSK modulators (Fig. 1) and a rate—% turbo code
with a QPSK modulator (Fig. 6). Simulation results for the rate—% turbo
encoder with BPSK modulation are plotted together with theoretical results for
uncoded BPSK (Fig. 8). The turbo code comprises two 16-state RSC encoders
and a moderate size 1024-bit interleaver, with results shown for 1, 3, 6, and
18 decoding iterations. Our results, showing coding gain of 7.4 dB relative to
uncoded BPSK (BER = 104, iterations = 6), are comparable to those obtained
by Barbulescu [15, Fig. 3.38], and as mentioned in section 2.3.2, they show the
diminishing rate of return of lower BER as the number of decoding iterations
increases. BER performance can be improved with larger interleavers but at
the cost of increased delay.

Simulation results for the rate—% turbo encoder with QPSK modulation are
plotted together with theoretical results for uncoded QPSK (Fig. 9). The
turbo code comprises the same two 16-state RSC encoders as in the rate—% case
above and the same 1024-bit interleaver, with results shown for 1, 3, 6, and 18
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* Turbo Code (ITER=6)
3 x Turbo Code (ITER=18) 4
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Figure 8: Bit error rate performance of rate—% turbo code with BPSK modula-
tion.

decoding iterations. Our rate—% results, showing coding gain of 6.4 dB relative to
uncoded QPSK (BER = 104, iterations = 6), are comparable to those obtained
by Barbulescu [15, Fig. 3.33], and as expected the rate—% code achieved lower
gain than the rate—% code. As in the rate—% case above, these results show the
diminishing rate of return of lower BER as the number of decoding iterations
increases, and BER performance can be improved with larger interleavers at the

cost of increased delay.

3 Turbo-Coded Pragmatic TCM

The work of Ungerboeck [4] on trellis-coded modulation (TCM) and of Imai and
Hirakawa [16] on multilevel coding (MLC) demonstrated that the combination
of higher-order modulation schemes with set partitioning and MLC can produce
coding gain without increasing transmitted power or required bandwidth. TCM,
which may be interpreted as a special case of MLC with two levels, is now a
well-established method in digital communication capable of achieving coding
gains within the 3 to 6 dB range predicted in [4] for a trellis-coded 8-PSK
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Figure 9: Bit error rate performance of rate—% turbo code with QPSK modula-
tion.

system relative to an uncoded QPSK system. Recently, Iwadate and Ikeda
[17] developed a trellis-coded 8-PSK modem that can transmit High Definition
Television (HDTV) programs at a bit rate of 60 Mbps over a satellite channel.

The application of turbo codes to TCM has received considerable attention in
the literature; see [3,18-28] for a sample. As noted in section 1, for our applica-
tion of turbo codes to TCM, we have chosen to combine turbo codes with Prag-
matic TCM, creating what we call turbo-coded Pragmatic TCM (TCPTCM).
Pragmatic TCM (PTCM) was described in [5] and has been implemented in
hardware by Qualcomm, Inc., as the Q1900 Single Chip Viterbi/Trellis De-
coder [29]. See below (Example 3) for an 8-PSK PTCM encoder/modulator,
which is easily generalized to M-PSK for M a power of 2.

Example 3 A mte—% PTCM encoder/modulator (Fig. 10) receives a pair of
input information bits, up1 and urz; passes the most significant information
bit, w1, unchanged; and encodes the least significant information bit, uys, as
two bits, cxo and cpz, usSing a mte—% convolutional encoder. The three encoded
bits, cp1 = g1, Cr2, and ck3, are then mapped to an 8-PSK signal constellation
as specified in [5], where ¢y = 0, or 1 selects the upper or lower half-plane,
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respectively, and the combination, cracrs, selects one of four phases (in radians)
by the following rule:

00 — 0,
01— =
4
11—
2
10 — 3—7T
4
Ug1 Cr1=Up
>
8-PSK
Ci2 Mapper
Uk -
Convolutional P
—>»
Encoder
>

k3

Figure 10: Rate—% PTCM encoder/modulator.

3.1 Encoding and Modulation

We constructed a rate—% TCPTCM encoder/modulator (Fig. 11) by analogy
with the PTCM encoder/modulator in Example 3 (Fig. 10). Specifically, we
made the obvious substitution of a rate—% turbo encoder for the rate—% convolu-
tional encoder while keeping the same signal constellation mapping. As shown
(Fig. 11) and explained previously in section 2.1.4 the rate-1 turbo encoder
is obtained by puncturing the parity bits output from a rate—% turbo encoder
comprising two identical RSC codes which are concatenated in parallel and sep-

arated by an interleaver, denoted as I in the figure.

3.2 Decoding

We decode our TCPTCM code by analogy with the PTCM decoding procedure
employed by the Q1900 Viterbi/Trellis Decoder as described in [29]. Briefly,
decoding of rate—% TCPTCM encoded data proceeds as follows:

1. Each in-phase and quadrature signal pair, (55;{, :?Z), received from the de-
modulator is input to a phase estimator which calculates a phase estimate,
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Figure 11: Rate-2 TCPTCM encoder/modulator.

05, providing preliminary estimates, Cpo and Cis, of ¢x2 and c¢p3, respec-
tively.

2. Sequences of pairs, Cp2 and Ciz, are decoded using a rate—% turbo code
decoder, providing estimates, Uga, of ugo.

3. The values of 1yo are then encoded by the rate—% turbo code encoder, pro-
viding improved final estimates, i, and Cj4, of cxe and c;3, respectively.

4. Each value of gk is used again to determine whether the phase represented
by the pair, €j4C}5, s in the upper or lower half-plane, thus determining
an estimate, Uy, of ugy.

3.3 Results

We compared the performance of TCPTCM with that of PTCM in our own
simulations and with the published simulation results of a turbo-coded TCM
method of Benedetto et al. [19] called parallel concatenated trellis coded modu-
lation (PCTCM). The results are plotted (Fig. 12) for comparable 2 bits/s/Hz
systems: (1) uncoded QPSK; (2) the rate-2 PTCM system above (Example 3)
with a single 64-state convolutional encoder; (3) the rate—% TCPTCM sys-
tem (Fig. 11) with two 16-state RSC encoders, a 1024-bit interleaver, and
five decoding iterations; (4) the rate—% TCPTCM system (Fig. 11) with two
16-state RSC encoders, an 8192-bit interleaver, and five decoding iterations;
(5) and the rate-3 PCTCM system of Benedetto et al. [19] with two 16-state
RSC encoders, four 4096-bit interleavers, and eight decoding iterations.
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Figure 12: Bit error rate performance comparison between PTCM, TCPTCM,
and PCTCM.

At a BER of 1075 (Fig. 12) the PTCM simulation demonstrated coding gain
of approximately 3 dB relative to the 9.6 dB attained theoretically by uncoded
QPSK in AWGN; while the two TCPTCM simulations, with computational
complexity comparable to the PTCM system but greater delay, achieved in-
creased gains of 4 and 5 dB depending on interleaver length. Extrapolating the
TCPTCM curve with 8192-bit interleaver to a BER of 10~°, it appears that this
TCPTCM system is only about 1 dB away from the 3.5 dB performance point
recorded for the PCTCM system, which is itself within 1.7 dB of Shannon’s
limit for 2 bits/s/Hz systems.

3.4 Discussion

It is encouraging that the TCPTCM system, with simpler design comlexity and
shorter interleaver, achieved performance nearly comparable to the PCTCM
system. These results provide an example of the trade-offs between the benefits
of very large coding gain achieved at reasonable complexity and the costs of
increased delay related to interleaver length. The plots (Fig. 12) and the table
below, of delay as a function of interleaver length, INTL, and bit rate, R, can
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be used to provide a preliminary analysis of these trade-offs.

INTL (bits)

R (bits/sec) ~ 1024 8192 16384
2400 0427 3413 6.827
9600 0.107 0853 1.707
12000 0.085 0.683 1.365
32000 0.032 0256 0.512
64000 0.016 0.128 0.256

Table 2: Delay (INTL + R) for selected values of INTL and R.

For further research we note that in the TCPTCM system, only one of three
bits entering the modulator is encoded (Fig. 11) compared to two of three bits
in the PTCM system (Fig. 10), suggesting that an improved signal mapping
scheme might be developed for TCPTCM. Also, as noted above, the TCPTCM
system represents a simple modification of PTCM, which has already been im-
plemented in hardware; hence, it seems likely that, with an efficient hardware
implementation of turbo encoding and decoding, a hardware implementation of
the TCPTCM system itself could be developed.
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